Aspects of rarity in the Australian flora

James A. Elsol

Summary

Elsol, James A. (1993). Aspects of rarity in the Australian flora. *Austrobaileya* 4(1): 1–6. Four regional floras of eastern Australia each with over 1 500 species reveal superorder compositions similar to that for the whole of Australia. Of the 30 superorders known to occur in Australia, three to seven account for 75% of the concentration of dominance within the floras. Commeliniflorae consistently contributes at least 10% of species in a region. Fabiflorae, Myrtiflorae, Liliiflorae, Malviflorae and Asteriflorae may each contribute up to 10% or more. Eighteen superorders consistently contribute less than 5% each. One superorder, Loasiflorae has not been recorded from Australia.

Twenty-two percent of Australia's flora has been recorded as rare. Percentage rarity recorded within superorders varies up to 37% but appears unrelated to superorder size.

Future research into rare taxa depends on whether priority is given to groups accounting for high percentages of rare species within a flora, eg Myrtiflorae with 15% of Australia's rare species, or those taxa with a high degree of rarity, e.g. 37% of palms (Areciflorae) are rare but constitute only about 1% of Australia's rare species.

Keywords: rarity - Australian flora, floristic composition, superorders - Angiosperms.

James A. Elsol, 46 Avalon Road, Sheldon, Qld 4157, Australia

Introduction

Attention continues to focus on rarity in the world's biota. Much of the biological attention has been directed towards recognising those taxa that are rare and determining whether they are threatened or endangered (Reveal 1981). What has seemingly not been addressed though, is whether rarity is evenly distributed across the major groups of taxa. The present investigation addresses this issue by examining the composition of some floras of eastern Australia.

Sources of data

The intention of this investigation is to reveal trends rather than provide numerically accurate syntheses. For the latter more detailed data may be required.

An overview of Australia's flora was gained from Morley and Toelken (1983) and compared with the following four more restricted floras in eastern Australia: Moreton refers to the coastal part of south-eastern Queensland described by McDonald and Elsol (1984); Port Curtis is the flora described by Batianoff and Dillewaard (1988) from around Rockhampton in central coastal Queensland; Northern Territory comprises the flora of the Darwin and Gulf region botanical province as described by Dunlop (1987) and Victoria comprises the flora of Victoria as described by Forbes *et al.* (1984). Data on rare species were obtained from Briggs and Leigh (1988) for Australia, Victoria and Northern Territory, from HERBRECS (Queensland Herbarium records) for Moreton and from Batianoff and Dillewaard (1988) for Port Curtis.

Naturalised exotic taxa were ignored.

Superorders follow the system of Dahlgren (1980).

Distribution of rarity within flora

A common concept of species rarity is that taxa may be rare if numerically few or of limited geographic extent.

Rarity may also occur in taxonomic ranks higher than species in the same way as species rarity exists, and also in the sense that a particular higher taxon may comprise few species and therefore constitute only a rare component of a

Accepted for publication 1 June 1993

Austrobaileya 4(1): 1-6 (1993)

flora. For example, aroid and ginger floras, with about 25 species each, are rare in the Australian angiosperm flora which totals about 14 500 species.

Composition of the Australian flora: In the four floristic censuses investigated,20–28 superorders are commonly present (**Tables 1 &**

3). Superorder compositions of the regional floras do not differ significantly from that of Australia at 5% level (Kolmogorov-Smirnov test, Siegel & Castellan 1988). Superorders accounting for 90% of Australia's flora and their major constituent families are listed in **Table 2**.

Table 1. Superorder composition of the Australian angiosperm flora ranked from highestto lowest representation. Arrows indicate added variability observed in four easternAustralian floras (Northern Territory to Victoria).

	Percent	age of species within f	lora	
10% or >	5-9%	1-4%	0–1%	Absent
Commeliniflorae	No. 5		<u></u>	
Fabiflorae	>			
Myrtiflorae ——	>			
<	— Liliiflorae ——	>		
<	— Malviflorae ——	>		
	Proteiflorae	>		
	Lamiiflorae ——	>		
<		>		
	Gentianiflorae —	>		
	<			
	<	—Caryophylliflorae		
		Corniflorae		
		Solaniflorae		
		Araliiflorae		
		Violiflorae		
		Santaliflorae		
		Magnoliiflorae —	\rightarrow	
		Rosiflorae	\longrightarrow	
		Theiflorae ———	>	
		<	-Primuliflorae	
		<	—Alismatiflorae	
			Areciflorae	
			Ranunculiflorae	
			Polygoniflorae	
			Nymphaeiflorae	
			Ariflorae	
			Zingiberiflorae	
			Balanophoriflorae	
			Podostemiflorae	
			Triuridiflorae	
				Loasiflora

2

Table 2. Superorders accounting for 90% of Australia's angiosperm flora and major constituent families

1.	Commeliniflorae:	Cyperaceae, Poaceae
2.	Fabiflorae:	Mimosacee, Fabaceae
3.	Myrtiflorae:	Myrtaceae
4.	Liliiflorae:	Liliaceae, Orchidaceae
5.	Malviflorae:	Dilleniaceae, Malvaceae, Euphorbiaceae
6.	Proteiflorae:	Proteaceae
7.	Lamiiflorae:	Acanthaceae, Lamiaceae, Scrophulariaceae, Verbenaceae
8.	Asteriflorae:	Asteraceae, Campanulaceae
9.	Gentianiflorae:	Goodeniaceae, Rubiaceae, Apocynaceae, Asclepiadaceae
10.	Rutiflorae:	Rutaceae, Sapindaceae
11.	Caryophylliflorae:	Amaranthaceae, Chenopodiaceae, Caryophyllaceae
12.	Corniflorae:	Epacridaceae
13.	Solaniflorae:	Solanaceae
14.	Araliiflorae:	Apiaceae
15.	Violiflorae:	Brassicaceae, Capparaceae

One superorder, Commeliniflorae, constantly contributes 10% or more species to the four regional floras studied. A further five superorders, Fabiflorae, Myrtiflorae, Liliiflorae, Malviflorae and Asteriflorae may each contribute to 10% or more in some of the regional floras.

Eighteen superorders consistently contribute less than 5% each.

One superorder Loasiflorae, has not been recorded from Australia.

Relationship of rare species numbers to size of parent superorder: Rare species have been recorded as comprising as much as 22% of Australia's flora (Briggs & Leigh 1988). By excluding Podostemiflorae with about one species, rarity of species within superorders varies between 2% (Polygoniflorae) and 37% (Areciflorae) and mostly lies within 10% and 30%. The percentage varies regionally and appears uncorrelated with the size of the superorder (r < 0.1).

None-the-less interesting trends are observed for some of the superorders (**Table 3**).

1. Commeliniflorae, Caryophylliflorae: The proportions of rare species within Australia

and the four regional floras accounted for by these superorders are lower than the proportions these superorders have when all species are considered.

- 2. Myrtiflorae, Liliiflorae, Malviflorae, Proteiflorae: The proportions of rare species within Australia and the four regional floras accounted for by these superorders are mostly higher than the proportions these superorders have when all species are considered.
- 3. Fabiflorae: Though there is regional variation, rarity of the superorder's species within the Australian flora is in the same proportion that the superorder has when all species are considered.
- 4. Lamiiflorae: Compared to the other floras examined, the proportions of rare species in Port Curtis and Northern Territory floras accounted for by the superorder are higher than the proportions this superorder has when all species are considered.
- 5. Gentianiflorae, Solaniflorae, Violiflorae: Compared to the other floras examined, the proportions of rare species in Port Curtis accounted for by these superorders are higher than the proportions these superorders have when all species are considered.

as
floi
osperm
angi
ralian
Aust
astern
four e
and
ralian
Aust
1 of
position
Comp
ble 3.
Ta

Superorders are those of Dahlgren (1980). Column 1 contains percentages of all species (A); column 2 rare species (R). Superorders above the line collectively contribute 75% or more to the concentration of dominance. (. = <1%)

~~	14	6	14	12	9	15	1	2	00	2	0	1	4	4	1	0	ŝ	0	1	1	0	0	0	0	0	0	0	0		
ritory A	25	13	12	∞	L	4	4	4	4	З	ŝ	1	1	Ļ	Γ	Ч	۲	1	-	1	-	-	•		•	•	•	•		
Northern Ter	Commeliniflorae	Fabiflorae	Malviflorae	Myrtiflorae	Gentianiflorae	Lamiiflorae	Caryophylliflorae	Solaniflorae	Liliiflorae	Rutiflorae	Asteriflorae	Santaliflorae	Corniflorae	Proteiflorae	Violiflorae	Alismatiflorae	Areciflorae	Magnoliiflorae	Araliiflorae	Theiflorae	Primuliflorae	Ariflorae	Nymphaeiflorae	Ranunculiflorae	Polygoniflorae	Rosiflorae	Podostemiflorae	Zingiberiflorae		
×	00	4	10	∞	12	10	4	8	80	3	9	3	9	0	0	00	2	0	0	0	0	0	0	2	0	0				
A J	22	12	11	L	9	9	ŝ	S	4	4	4	ŝ	2	0	3	2	H	, 1	-	1	•	•	•	•	•	•				
Port Curtis	Commeliniflorae	Fabiflorae	Malviflorae	Myrtiflorae	Gentianiflorae	Rutiflorae	Asteriflorae	Liliiflorae	Lamiiflorae	Caryophylliflorae	Solaniflorae	Santaliflorae	Violiflorae	Magnoliiflorae	Araliiflorae	Proteiflorae	Rosiflorae	Corniflorae	Alismatiflorae	Ranunculiflorae	Polygoniflorae	Nymphaeiflorae	Ariflorae	Theiflorae	Areciflorae	Zingiberiflorae				
Я	12	14	12	6	6	5	14	4	1	4	0	2	L	4	-	0	1	Ţ	-	0	0	0	0	0	1	0				
¥	18	14	11	٢	6	9	9	Ś	S	4	e	e	e	2	2	2	1	1	1	1	1	•	•	÷	•					
Victoria	Commeliniflorae	Asteriflorae	Liliflorae	Myrtiflorae	Malviflorae	Caryophylliflorae	Fabiflorae	Lamiiflorae	Gentianiflorae	Rutiflorae	Araliiflorae	Corniflorae	Proteiflorae	Violiflorae	Solaniflorae	Alismatiflorae	Santaliflorae	Rosiflorae	Ranunculiflorae	Polygoniflorae	Theiflorae	Magnoliiflorae	Ariflorae	Primuliflorae	Nymphaeiflorae	Areciflorae				
м	4	17	L	14	6	L	5	S	S	4	4	9	-	Ţ	-	0	0	0	m	m	2	1	0	0	0	0	0			
A	15	11	10	6	7	9	9	9	4	3	ŝ	3	3	2	2	2	3	2	2	1	1		•	•	•	•	•			
Moreton	Commeliniflorae	Liliiflorae	Fabiflorae	Myrtiflorae	Rutiflorae	Malviflorae	Asteriflorae	Gentianiflorae	Lamiiflorae	Magnoliiflorae	Corniflorae	Proteiflorae	Santaliflorae	Araliiflorae	Caryophylliflorae	Violiflorae	Solaniflorae	Alismatiflorae	Rosiflorae	Primuliflorae	Ranunculiflorae	Polygoniflorae	Ariflorae	Theiflorae	Nymphaeiflorae	Areciflorae	Zingiberiflorae			
К	٢	12	15	8	8	6	S	S	4	9	2	S	Ļ	2	2	۲	2			-	•		•	•	•	·	•	0	• •	>
¥	13	12	10	L	L	9	9	9	9	4	4	4	2	2	2	2		-	-	•	•	•	•	•	•			•	•	•
Australia	1. Commeliniflorae	2. Fabiflorae	3. Myrtiflorae	4. Liliiflorae	5. Malviflorae	6. Proteiflorae	7. Lamiiflorae	8. Asteriflorae	9. Gentianiflorae	10. Rutiflorae	11. Caryophylliflorae	12. Corniflorae	13. Solaniflorae	14. Araliiflorae	15. Violiflorae	16. Santaliflorae	17. Magnoliiflorae	18. Rosiflorae	19. Theiflorae	20. Primuliflorae	21. Alismatiflorae	22. Areciflorae	23. Ranunculiflorae	24. Polygoniflorae	25. Nymphaeiflorae	26. Ariflorae	27. Zingiberiflorae	28. Balanophoriflorae	29. Podostemitiorae	ou. Intumutionac

Elsol, Rarity and floristic composition

Concentration of higher taxa diversity: The degree of concentration or dominance in a community or flora may be indicated by Simpson's (1949) Index, in this case estimated by Σp_i^2 where p_i is the proportion of a flora accounted for by a superorder. The index measures the probability that two individuals selected at ran-

dom from a sample will belong to the same taxon. Values of the index calculated from the proportions of the superorders within the floras investigated are shown in **Table 4**. Three to seven superorders collectively contribute 75% or more to the concentration of dominance in the floras examined, with Commel-iniflorae and Fabiflorae common to all five.

Table 4. Dominance of	angiosperm superor	rders and constitue	nt rare components in	Australia
and some eastern Aust	ralian floras. C = S	impson's Index		

		Total fl	ora	Rare c	t	
	C	$\frac{1}{C}$	Flora size 000's	С	$\frac{1}{C}$	Flora size × 0.1
Australia	0.076	13.3	14.5	0.081	12.4	320
Moreton	0.076	13.3	1.7	0.087	11.5	12
Victoria	0.089	11.2	2.7	0.097	10.3	18
Port Curtis	0.097	10.3	1.9	0.078	12.8	5
Northern Territory	0.113	8.9	2.1	0.099	10.1	9.5

None of the regional floras examined shows dominance less than expressed for Australia as a whole. The highest concentration of dominance is expressed in the Northern Territory and is associated with that flora's high percentage (25%) of Commeliniflorae (**Table 3**). A similar trend is also well developed in the Port Curtis district.

Simpson's Index varies inversely with heterogeneity. The reciprocal of the index may therefore be interpreted as the number of equally represented taxa that would be required to produce the observed heterogeneity (Peet 1974) and shows a range of 9–13 superorders of the total of 30 for Australia. The rare components of the floras of Australia, Moreton and Victoria are concentrated slightly more than are the superorders when all species are considered (**Table 4**). For Port Curtis and Northern Territory the rare species are more evenly spread across the superorders. This difference may be attributable to the lower species numbers present in the latter two floras.

Discussion and implications

Observations of percentage rarity within taxa and the representations of those taxa within floras suggest differences in the way major evolutionary lines are dispersed. For example rarity in the Commeliniflorae and Caryophylliflorae is low relative to the total contributions these two taxa have in Australia, whereas in Myrtiflorae and Proteiflorae rarity is relatively high. This observation is consistent with Commeliniflorae and Carvophylliflorae generally having wider geographic ranges than species of Myrtiflorae, Malviflorae and Proteiflorae, that is changes in species composition over distance or environmental gradient is generally higher for the latter three taxa. Pollination, whether by wind or animal vector, may be contributory.

In the flora of Australia the number of species per superorder ranges from one to nearly 2000. From present observations, percentage rarity within them appears unrelated to their size but is widespread across the superorders. Accordingly, as priorities for vegetation conservation often relate to the presence of rare species, it is important to realise that the greatest diversity in genetic material that would be conserved by rare species conservation occurs when those species are from a diverse range of higher taxa rather than a narrow range. This may be important when ranking the importance of areas with similar numbers of rare species.

For further research into rarity choosing major groups of plants will depend upon how rarity is assessed. If for example priority is based on the compositions of rare species the major taxa to be investigated are

Myrtiflorae	15% (ie 15% of rare Aus- tralian species are myrtles)
Fabiflorae	12%
Proteiflorae	9%
Liliiflorae	8%
Malviflorae	8%
Commeliniflorae	7%
Rutiflorae	6%

If priority is based on percentage rarity within superorders, major taxa to be investigated are

Areciflorae	37% (ie 37% of palms are rare)
Myrtiflorae	34%
Proteiflorae	33%
Magnoliiflorae	33%
Rutiflorae	32%
Zingiberiflorae	32%
Corniflorae	30%

If priority is to be based on a combination of both above criteria major taxa requiring investigation are Myrtiflorae, Proteiflorae and Rutiflorae. Austrobaileya 4(1): 1-6 (1993)

Acknowledgements

Advice from Professor H.T. Clifford and discussions with Mr G.N. Batianoff are greatly appreciated.

References

- BATIANOFF, G. N. & DILLEWAARD, H.A. (1988). Port Curtis district and Early Botanists. Queensland Herbarium and Society for Growing Australian Plants (Qd Region) Inc.
- BRIGGS, J.D. & LEIGH, J.H. (1988). Rare or Threatened Australian Plants. 1988 Revised Edition. Australian Nat-ional Parks and Wildlife Service Special Publication No. 14. Canberra: Australian National Parks and Wildlife Service.
- DAHLGREN, R.M.T. (1980). A revised system of classification of the angiosperms. *Botanical Journal of the Linnean Society* 80: 91–124.
- DUNLOP, C.R. (ed.) (1987). Checklist of vascular plants of the Northern Territory. Technical Report – Number 26. Darwin, N.T.: Conservation Commission of the Northern Territory.
- FORBES, S.J., CULLAN, P.K., KILGOUR, R.A. & POWELL, M.A. (1984). A Census of the Vascular Plants of Victoria. Melbourne: National Herbarium of Victoria, Department of Conservation, Forests and Lands.
- MCDONALD, W.J.F. & ELSOL, J.A. (1984). Moreton Region vegetation map series: summary report and species checklist for Caloundra, Brisbane, Beenleigh and Murwillumbah Sheets. Brisbane: Queensland Department of Primary Industries.
- MORLEY, B.D. & TOELKEN, H.R. (eds) (1983). Flowering Plants in Australia. Adelaide: Rigby.
- PEET, R.K. (1974). The Measurement of species diversity. Annual Review of Ecology and Systematics 5: 285–307.
- REVEAL, J.L. (1981). The concepts of rarity and population threats in plant communities. In L.E. Morse & M.S. Henifin (eds), *Rare Plant Conservation: geographical data organisation*, pp. 41–47. New York: New York Botanical Garden.
- SIEGAL, S. & CASTELLAN, N.J. (1988). Nonparametric Statistics for the Behavioural Sciences. Second edition. New York: McGraw-Hill.
- SIMPSON, E.H. (1949). Measurement of diversity. *Nature* 163: 688.